Logo des Repositoriums
 
Konferenzbeitrag

Evaluation of a decision support system for the recommendation of pasture harvest date and form

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The task of generating automatic recommendations of pasture harvest date and form was previously addressed through a knowledge-based decision support system (DSS). The system follows expert rules and exploits data such as the weather history and forecast, the growth stage of grass and legumes, plant height and crude fibre content. In this paper, we present the results of our evaluation of this DSS on 26 fields in West and Northwest Germany. We compared the suggestions made by the DSS with the decisions of expert farmers and obtained an accuracy of R²=0.746 and RMSE=7.83 days. The best results occurred for intensively managed fields for dairy cows, with an R² of 0.891 and RMSE of 3.20 days. We conclude our DSS and its underlying methodology have the potential to support farmers and secure high-quality fodder.

Beschreibung

Reuter, Tobias; Saborío Morales, Juan Carlos; Tieben, Christoph; Nahrstedt, Konstantin; Kraatz, Franz; Meemken, Hendrik; Hünker, Gerrit; Lingemann, Kai; Broll, Gabriele; Jarmer, Thomas; Hertzberg, Joachim; Trautz, Dieter (2023): Evaluation of a decision support system for the recommendation of pasture harvest date and form. 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-724-1. pp. 489-494. Osnabrück. 13.-14. Februar 2023

Zitierform

DOI

Tags