Logo des Repositoriums
 

Blue Apple – an algorithm to realize agricultural classification under difficult light and color situations

dc.contributor.authorCredner, Jonas
dc.contributor.authorRehrmann, Peter
dc.contributor.authorRaaz, Waldemar
dc.contributor.authorRath, Thomas
dc.contributor.editorHoffmann, Christa
dc.contributor.editorStein, Anthony
dc.contributor.editorRuckelshausen, Arno
dc.contributor.editorMüller, Henning
dc.contributor.editorSteckel, Thilo
dc.contributor.editorFloto, Helga
dc.date.accessioned2023-02-21T15:14:01Z
dc.date.available2023-02-21T15:14:01Z
dc.date.issued2023
dc.description.abstractComputer-image processing becomes more and more important in the analysis of data in biological and agricultural research and practice. However, robust image processing is highly dependent on the histogram analysis algorithms used and the quality of the data being processed. The algorithm presented here aims to improve the accuracy of the classification of image data generated under complex boundary situations and inconsistent lighting conditions. Using the example of the determination of nitrogen content of tomato leaves and the qualitative determination of starch content of apples on the basis of color image processing, we showed that the developed algorithm is able to perform a robust classification and represents an improvement to simple histogram analysis.en
dc.identifier.isbn978-3-88579-724-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40267
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-330
dc.subjectclassification
dc.subjecthistogram analysis
dc.subjectcolor image processing
dc.subjectstarch detection apples
dc.subjectN-analysis plants
dc.titleBlue Apple – an algorithm to realize agricultural classification under difficult light and color situationsen
dc.typeText/Conference Paper
gi.citation.endPage64
gi.citation.publisherPlaceBonn
gi.citation.startPage53
gi.conference.date13.-14. Februar 2023
gi.conference.locationOsnabrück

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
GIL_2023_Credner_53-64.pdf
Größe:
902.17 KB
Format:
Adobe Portable Document Format