Logo des Repositoriums
 

Improving Very Low-Resolution Iris Identification Via Super-Resolution Reconstruction of Local Patches

dc.contributor.authorAlonso-Fernandez,Fernando
dc.contributor.authorFarrugia,Reuben A.
dc.contributor.authorBigun,Josef
dc.contributor.editorBrömme,Arslan
dc.contributor.editorBusch,Christoph
dc.contributor.editorDantcheva,Antitza
dc.contributor.editorRathgeb,Christian
dc.contributor.editorUhl,Andreas
dc.date.accessioned2017-09-26T09:21:00Z
dc.date.available2017-09-26T09:21:00Z
dc.date.issued2017
dc.description.abstractRelaxed acquisition conditions in iris recognition systems have significant effects on the quality and resolution of acquired images, which can severely affect performance if not addressed properly. Here, we evaluate two trained super-resolution algorithms in the context of iris identification. They are based on reconstruction of local image patches, where each patch is reconstructed separately using its own optimal reconstruction function. We employ a database of 1,872 near-infrared iris images (with 163 different identities for identification experiments) and three iris comparators. The trained approaches are substantially superior to bilinear or bicubic interpolations, with one of the comparators providing a Rank-1 performance of ∼88% with images of only 15×15 pixels, and an identification rate of 95% with a hit list size of only 8 identities.en
dc.identifier.isbn978-3-88579-664-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/4654
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBIOSIG 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-70
dc.subjectIris
dc.subjectbiometrics
dc.subjectsuper-resolution
dc.subjectlow resolution
dc.titleImproving Very Low-Resolution Iris Identification Via Super-Resolution Reconstruction of Local Patchesen
gi.citation.endPage242
gi.citation.startPage235
gi.conference.date20.-22. September 2017
gi.conference.locationDarmstadt, Germany
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper23.pdf
Größe:
584.81 KB
Format:
Adobe Portable Document Format