Logo des Repositoriums
 
Konferenzbeitrag

Shifting Quality Assurance of Machine Learning Algorithms to Live Systems

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2018

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik

Zusammenfassung

A fundamental weakness of existing solutions to assess the quality of machine learning algorithms is the assumption that test environments sufficiently mimic the later application. Given the data dependent behavior of these algorithms, only limited reasoning about their later performance is possible. Thus, meaningful quality assurance is not possible with test environments. A shift from the traditional testing environment to the live system is needed. Thus, costly test environments are replaced with available live systems that constantly execute the algorithm.

Beschreibung

Auer, Florian; Felderer, Michael (2018): Shifting Quality Assurance of Machine Learning Algorithms to Live Systems. Software Engineering und Software Management 2018. Bonn: Gesellschaft für Informatik. PISSN: 1617-5468. ISBN: 978-3-88579-673-2. pp. 211-212. Software Management 2018 - Wissenschaftliches Hauptprogramm. Ulm. 5.-9. März 2018

Zitierform

DOI

Tags