Logo des Repositoriums
 

Educational Text Summarizer: Which sentences are worth asking for?

dc.contributor.authorRüdian, Sylvio
dc.contributor.authorHeuts, Alexander
dc.contributor.authorPinkwart, Niels
dc.contributor.editorZender, Raphael
dc.contributor.editorIfenthaler, Dirk
dc.contributor.editorLeonhardt, Thiemo
dc.contributor.editorSchumacher, Clara
dc.date.accessioned2020-09-08T09:46:22Z
dc.date.available2020-09-08T09:46:22Z
dc.date.issued2020
dc.description.abstractMany question generation approaches focus on the generation process itself, but they work with single sentences as input only. Although the state of the art of question generation’s results is quite good, it cannot be used practically as the selection which sentences are worth asking for in an educational setting is currently not possible in an automated way. This limits the ability to generate interactive course materials at scale. In this paper, we conduct a study where we compare teachers’ sentence selections of texts with 9 algorithms to find the most appropriate ones concerning reading comprehension. 30 teachers compared the “winner” algorithm, Edmundson with LexRank, which was found to be the optimal algorithm according to previous literature. The result shows that Edmundson outperforms LexRank.en
dc.identifier.isbn978-3-88579-702-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34171
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V.
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-308
dc.subjectQuestion generation
dc.subjectOnline courses
dc.subjectText summarization
dc.titleEducational Text Summarizer: Which sentences are worth asking for?en
dc.typeText/Conference Paper
gi.citation.endPage288
gi.citation.publisherPlaceBonn
gi.citation.startPage277
gi.conference.date14.-18. September 2020
gi.conference.locationOnline

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
277 DELFI2020_paper_15.pdf
Größe:
250.87 KB
Format:
Adobe Portable Document Format