Logo des Repositoriums
 

Carpe Diem: A Lifelong Learning Tool for Automated Wildlife Surveillance

dc.contributor.authorBrust, Clemens-Alexander
dc.contributor.authorBarz, Björn
dc.contributor.authorDenzler, Joachim
dc.date.accessioned2021-12-14T10:57:23Z
dc.date.available2021-12-14T10:57:23Z
dc.date.issued2021
dc.description.abstractWe introduce Carpe Diem, an interactive tool for object detection tasks such as automated wildlife surveillance. It reduces the annotation effort by a utomatically selecting informative images for annotation, facilitates the annotation process by proposing likely objects and labels, and accelerates the integration of new labels into the deep neural network model by avoiding re-training from scratch. Carpe Diem implements active learning, which intelligently explores unlabeled data and only selects valuable examples to avoid redundant annotations. This strategy saves expensive human resources. Moreover, incremental learning enables a continually improving model. Whenever new annotations are available, the model can be updated efficiently and quickly, without re-training, and regardless of the amount of accumulated training data. Because there is no single large training step, the model can be used to make predictions at any time. We exploit this in our annotation process, where users only confirm or reject proposals instead of manually drawing bounding boxes.en
dc.identifier.doi10.18420/informatik2021-034
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37698
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectLifelong Learning
dc.subjectObject Detection
dc.subjectAutomated Monitoring
dc.titleCarpe Diem: A Lifelong Learning Tool for Automated Wildlife Surveillanceen
dc.title.subtitleImplementing Active and Incremental Learning for Object Detectionen
gi.citation.endPage423
gi.citation.startPage417
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleWorkshop: Computer Science for Biodiversity (CS4BIODiversity)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
D1-1.pdf
Größe:
1.11 MB
Format:
Adobe Portable Document Format