Logo des Repositoriums
 

Learning Tools for Agent-Based Modeling and Simulation

dc.contributor.authorJunges, Robert
dc.contributor.authorKlügl, Franziska
dc.date.accessioned2018-01-08T09:16:41Z
dc.date.available2018-01-08T09:16:41Z
dc.date.issued2013
dc.description.abstractIn this project report, we describe ongoing research on supporting the development of agent-based simulation models. The vision is that the agents themselves should learn their (individual) behavior model, instead of letting a human modeler test which of the many possible agent-level behaviors leads to the correct macro-level observations. To that aim, we integrate a suite of agent learning tools into SeSAm, a fully visual platform for agent-based simulation models. This integration is the focus of this contribution.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11361
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 27, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectAgent learning
dc.subjectAgent modeling
dc.subjectAgent-based simulation
dc.titleLearning Tools for Agent-Based Modeling and Simulation
dc.typeText/Journal Article
gi.citation.endPage280
gi.citation.startPage273

Dateien