Logo des Repositoriums
 

Worst-Case Morphs: a Theoretical and a Practical Approach

dc.contributor.authorUna Kelly, Luuk Spreeuwers and Raymond Veldhuis
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:33Z
dc.date.available2022-10-27T10:19:33Z
dc.date.issued2022
dc.description.abstractFace Recognition (FR) systems have been shown to be vulnerable to morphing attacks. We examine exactly how challenging morphs can become. By showing a worst-case construction in the embedding space of an FR system and using a mapping from embedding space back to image space we generate images that show that this theoretical upper bound can be approximated if the FR system is known. The resulting morphs can also succesfully fool unseen FR systems and are useful for exploring and understanding the weaknesses of FR systems. Our method contributes to gaining more insight into the vulnerability of FR systems.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9896965
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5473
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39716
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectBiometrics
dc.subjectMorphing Attack Detection
dc.subjectFace Recognition
dc.subjectVulnerability of Biometric Systems
dc.titleWorst-Case Morphs: a Theoretical and a Practical Approachen
dc.typeText/Conference Paper
gi.citation.endPage71
gi.citation.publisherPlaceBonn
gi.citation.startPage63
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
06-BIOSIG_2022_paper_24.pdf
Größe:
397.92 KB
Format:
Adobe Portable Document Format