Logo des Repositoriums
 

On the assessment of face image quality based on handcrafted features

dc.contributor.authorHenniger, Olaf
dc.contributor.authorFu, Biying
dc.contributor.authorChen, Cong
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-16T08:25:47Z
dc.date.available2020-09-16T08:25:47Z
dc.date.issued2020
dc.description.abstractThis paper studies the assessment of the quality of face images, predicting the utility of face images for automated recognition. The utility of frontal face images from a publicly available dataset was assessed by comparing them with each other using commercial off-the-shelf face recognition systems. Multiple face image features delineating face symmetry and characteristics of the capture process were analysed to find features predictive of utility. The selected features were used to build system-specific and generic random forest classifiers.en
dc.identifier.isbn978-3-88579-700-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34337
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-306
dc.subjectBiometrics
dc.subjectface recognition
dc.subjectface image quality.
dc.titleOn the assessment of face image quality based on handcrafted featuresen
dc.typeText/Conference Paper
gi.citation.endPage280
gi.citation.publisherPlaceBonn
gi.citation.startPage273
gi.conference.date16.-18. September 2020
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2020_paper_38_update.pdf
Größe:
725.2 KB
Format:
Adobe Portable Document Format