Logo des Repositoriums
 

A Theory on Big Data

dc.contributor.authorde Meer, Jan
dc.contributor.editorDraude, Claude
dc.contributor.editorLange, Martin
dc.contributor.editorSick, Bernhard
dc.date.accessioned2019-08-27T13:00:19Z
dc.date.available2019-08-27T13:00:19Z
dc.date.issued2019
dc.description.abstractCLAIRE the ‘initiative of a pan-EU confederation of AI Research Labs’[Cl18] anticipates a humane AI which is based on ethical and trustworthy tenets empowering citizens and society. Hence in order to achieve a human AI, new semantic categories of standards must be written enabling stakeholders to implement a responsible AI. Communication however generates lots of unstructured data sets to be classified and structured into data types. AI-based algorithms are suitable to derive - from data sets and data types - more sophisticated and implicitly given information that can further be enriched to knowledge about autonomous communicating processes or even autonomous behaving humans. The knowledge gained from applying data enrichment algorithms in turn may be used for reasoning and prediction purposes, thus improving applications a lot. The aim of this project is to find a common unified tool able to handle big data flows and types that allows the recognition of hidden information from both data flows and data types. The hidden information is sometimes also called meta-data, thus being implicitly existing but by tools becoming explicitly seen.en
dc.identifier.doi10.18420/inf2019_ws30
dc.identifier.isbn978-3-88579-689-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25064
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-295
dc.subjectBig Data Analysis
dc.subjectAI Standardization
dc.subjectBig Data Lake
dc.subjectData Science
dc.subjectData
dc.subjectInformation and Knowledge
dc.subjectIACS
dc.titleA Theory on Big Dataen
dc.typeText/Conference Paper
gi.citation.endPage269
gi.citation.publisherPlaceBonn
gi.citation.startPage261
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleStandardization of Industry 4.0 Automation and Control Systems

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper05_03.pdf
Größe:
273.05 KB
Format:
Adobe Portable Document Format