Logo des Repositoriums
 

GAFAI: Proposal of a Generalized Audit Framework for AI

dc.contributor.authorMarkert,Thora
dc.contributor.authorLanger,Fabian
dc.contributor.authorDanos,Vasilios
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:03Z
dc.date.available2022-09-28T17:10:03Z
dc.date.issued2022
dc.description.abstractML based AI applications are increasingly used in various fields and domains. Despite the enormous and promising capabilities of ML, the inherent lack of robustness, explainability and transparency limits the potential use cases of AI systems. In particular, within every safety or security critical area, such limitations require risk considerations and audits to be compliant with the prevailing safety and security demands. Unfortunately, existing standards and audit schemes do not completely cover the ML specific issues and lead to challenging or incomplete mapping of the ML functionality to the existing methodologies. Thus, we propose a generalized audit framework for ML based AI applications (GAFAI) as an anticipation and assistance to achieve auditability. This conceptual risk and requirement driven approach based on sets of generalized requirements and their corresponding application specific refinements as contributes to close the gaps in auditing AI.en
dc.identifier.doi10.18420/inf2022_107
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39480
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectAI Auditing
dc.subjectAI Certification
dc.subjectTrustworthy AI
dc.subjectSecurity
dc.subjectSafety
dc.subjectRobustness
dc.subjectInterpretability
dc.titleGAFAI: Proposal of a Generalized Audit Framework for AIen
gi.citation.endPage1256
gi.citation.startPage1247
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleTrustworthy AI in Science and Society

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
trustai_02.pdf
Größe:
157.02 KB
Format:
Adobe Portable Document Format