Logo des Repositoriums
 

Wind Power Prediction with Cross-Correlation Weighted Nearest Neighbors

dc.contributor.authorTreiber, Nils André
dc.contributor.authorKramer, Oliver
dc.contributor.editorGómez, Jorge Marx
dc.contributor.editorSonnenschein, Michael
dc.contributor.editorVogel, Ute
dc.contributor.editorWinter, Andreas
dc.contributor.editorRapp, Barbara
dc.contributor.editorGiesen, Nils
dc.date.accessioned2019-09-16T03:13:06Z
dc.date.available2019-09-16T03:13:06Z
dc.date.issued2014
dc.description.abstractA precise wind power prediction is important for the integration of wind energy into the power grid. Besides numerical weather models for short-term predictions, there is a trend towards the development of statistical data-driven models that can outperform the classical forecast models [1]. In this paper, we improve a statistical prediction model proposed by Kramer and Gieseke [5], by employing a cross-correlation weighted k-nearest neighbor regression model (x-kNN). We demonstrate its superior performance by the comparison with the standard u-kNN method. Even if different pre-processing steps are considered, our regression technique achieves a comparably high accuracy.de
dc.description.urihttp://enviroinfo.eu/sites/default/files/pdfs/vol8514/0063.pdfde
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25799
dc.publisherBIS-Verlag
dc.relation.ispartofProceedings of the 28th Conference on Environmental Informatics - Informatics for Environmental Protection, Sustainable Development and Risk Management
dc.relation.ispartofseriesEnviroInfo
dc.titleWind Power Prediction with Cross-Correlation Weighted Nearest Neighborsde
dc.typeText/Conference Paper
gi.citation.publisherPlaceOldenburg
gi.conference.date2014
gi.conference.locationOldenburg
gi.conference.sessiontitleRenewable Energy

Dateien