Logo des Repositoriums
 

Exploring Web Search Engines to Find Architectural Knowledge

dc.contributor.authorSoliman, Mohamed
dc.contributor.authorWiese, Marion
dc.contributor.authorLi, Yikun
dc.contributor.authorRiebisch, Matthias
dc.contributor.authorAvgeriou, Paris
dc.contributor.editorGrunske, Lars
dc.contributor.editorSiegmund, Janet
dc.contributor.editorVogelsang, Andreas
dc.date.accessioned2022-01-19T12:56:55Z
dc.date.available2022-01-19T12:56:55Z
dc.date.issued2022
dc.description.abstractSoftware engineers need relevant and up-to-date architectural knowledge (AK), in order to make well-founded design decisions. However, finding such AK is quite challenging. One pragmatic approach is to search for AK on the web using traditional search engines (e.g. Google); this is common practice among software engineers. Still, we know very little about what AK is retrieved, from where, and how useful it is. In this paper, we conduct an empirical study with 53 software engineers, who used Google to make design decisions using the Attribute-Driven-Design method. Based on how the subjects assessed the nature and relevance of the retrieved results, we determined how effective web search engines are to find relevant architectural information. Moreover, we identified the different sources of AK on the web and their associated AK concepts.en
dc.identifier.doi10.18420/se2022-ws-029
dc.identifier.isbn978-3-88579-714-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37982
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-320
dc.subjectsoftware architecture
dc.subjectarchitecture knowledge
dc.subjectsearch approach
dc.subjectGoogle
dc.titleExploring Web Search Engines to Find Architectural Knowledgeen
dc.typeText/Conference Paper
gi.citation.endPage86
gi.citation.publisherPlaceBonn
gi.citation.startPage85
gi.conference.date21.-25. Feburar 2022
gi.conference.locationBerlin/Virtuell
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A1-29.pdf
Größe:
245.57 KB
Format:
Adobe Portable Document Format