Unpacking a model: An interactive visualization of a text similarity algorithm for legal documents
dc.contributor.author | Soroko, Daria | |
dc.contributor.author | Ndöge, Nina | |
dc.contributor.author | Al-Shafeei, Ahmed | |
dc.contributor.author | Heuer, Hendrik | |
dc.contributor.editor | Alt, Florian | |
dc.contributor.editor | Bulling, Andreas | |
dc.contributor.editor | Döring, Tanja | |
dc.date.accessioned | 2019-08-22T04:36:46Z | |
dc.date.available | 2019-08-22T04:36:46Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper presents a functional prototype for an interactive web-based interface i_sift developed to foreground the decision-making process of an algorithm that detects similarities in legal texts through word embeddings. Using this as a case study in Computational Social Science, our goal is, first, to highlight the importance of making computational tools and methods transparent to social scientists. Secondly, we suggest an approach that accomplishes this using methods and principles from Interactive Machine Learning and the Algorithmic Experience framework. | en |
dc.description.uri | https://dl.acm.org/authorize?N681357 | |
dc.identifier.doi | 10.1145/3340764.3345371 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/24668 | |
dc.language.iso | en | |
dc.publisher | ACM | |
dc.relation.ispartof | Mensch und Computer 2019 - Tagungsband | |
dc.relation.ispartofseries | Mensch und Computer | |
dc.subject | Algorithmic Experience | |
dc.subject | Algorithmic Transparency | |
dc.subject | Computational Social Science | |
dc.subject | Visualization | |
dc.subject | Interactive Machine Learning | |
dc.title | Unpacking a model: An interactive visualization of a text similarity algorithm for legal documents | en |
dc.type | Text/Conference Paper | |
gi.citation.publisherPlace | New York | |
gi.conference.date | 8.-11. September 2019 | |
gi.conference.location | Hamburg | |
gi.conference.sessiontitle | MCI: Interactive Demos | |
gi.document.quality | digidoc |