Logo des Repositoriums
 

Intelligent code completion with Bayesian networks

dc.contributor.authorProksch, Sebastian
dc.contributor.authorLerch, Johannes
dc.contributor.authorMezini, Mira
dc.contributor.editorKnoop, Jens
dc.contributor.editorZdun, Uwe
dc.date.accessioned2017-06-21T07:37:30Z
dc.date.available2017-06-21T07:37:30Z
dc.date.issued2016
dc.description.abstractCode completion is an integral part of modern Integrated Development Environments (IDEs). Intelligent code completion systems can reduce long lists of type-correct proposals to relevant items. In this work, we replace an existing code completion engine named Best-Matching Neighbor (BMN) by an approach using Bayesian Networks named Pattern-based Bayesian Network (PBN).We use additional context information for more precise recommendations and apply clustering techniques to improve model sizes and to increase speed. We compare the new approach with the existing algorithm and, in addition to prediction quality, we also evaluate model size and inference speed. Our results show that the additional context information we collect improves prediction quality, and that PBN can obtain comparable prediction quality to BMN, while model size and inference speed scale better with large input sizes.en
dc.identifier.isbn978-3-88579-646-6
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2016
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-252
dc.titleIntelligent code completion with Bayesian networksen
dc.typeText/Conference Paper
gi.citation.endPage26
gi.citation.publisherPlaceBonn
gi.citation.startPage25
gi.conference.date23.-26. Februar 2016
gi.conference.locationWien

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
25.pdf
Größe:
30.63 KB
Format:
Adobe Portable Document Format