Logo des Repositoriums
 

Distributed Machine Learning Based Intrusion Detection System for Smart Grid

dc.contributor.authorWöhnert, Kai Hendrik
dc.contributor.editorWendzel, Steffen
dc.contributor.editorWressnegger, Christian
dc.contributor.editorHartmann, Laura
dc.contributor.editorFreiling, Felix
dc.contributor.editorArmknecht, Frederik
dc.contributor.editorReinfelder, Lena
dc.date.accessioned2024-04-19T12:54:03Z
dc.date.available2024-04-19T12:54:03Z
dc.date.issued2024
dc.description.abstractThe electrical grid is transitioning towards a decentralized structure, spurred by the inclusion of renewable energy. This paper addresses the complex security challenges faced due to its decentral network architecture. Traditional network security methods are insufficient in safeguarding against threats in this evolving environment. The focus is the creation of a decentralized intrusion detection system (IDS) using a machine learning approach optimized for resource-constrained devices. Preliminary evaluations indicate that smaller recurrent neural networks can effectively detect denial of service attacks in simulated networks. Future work will involve real-world data analysis and field tests in genuine smart grid environments.en
dc.identifier.doi10.18420/sicherheit2024_020
dc.identifier.isbn978-3-88579-739-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43961
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSicherheit 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings Volume P-345
dc.subjectintrusion detection
dc.subjectmachine learning
dc.subjectsmart grid
dc.titleDistributed Machine Learning Based Intrusion Detection System for Smart Griden
dc.typeText/Conference Paper
gi.citation.endPage279
gi.citation.publisherPlaceBonn
gi.citation.startPage275
gi.conference.date09.-11.04.2024
gi.conference.locationWorms
gi.conference.sessiontitlePromovierendenforum

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B1-1.pdf
Größe:
135.9 KB
Format:
Adobe Portable Document Format