Logo des Repositoriums
 

Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models

dc.contributor.authorSchreiber, Jens
dc.contributor.authorBuschin, Artjom
dc.contributor.authorSick, Bernhard
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:31Z
dc.date.available2019-08-27T12:55:31Z
dc.date.issued2019
dc.description.abstractDespite the increasing importance of forecasts of renewable energy, current planning studies only address a general estimate of the forecast quality to be expected and selected forecast horizons. However, these estimates allow only a limited and highly uncertain use in the planning of electric power distribution. More reliable planning processes require considerably more information about future forecast quality. In this article, we present an in-depth analysis and comparison of influencing factors regarding uncertainty in wind and photovoltaic power forecasts, based on four different machine learning (ML) models. In our analysis, we found substantial differences in uncertainty depending on ML models, data coverage, and seasonal patterns that have to be considered in future planning studies.en
dc.identifier.doi10.18420/inf2019_74
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25026
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectuncertainty analysis
dc.subjectmachine learning models
dc.subjectseasonal effects
dc.subjectdata coverage
dc.titleInfluences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Modelsen
dc.typeText/Conference Paper
gi.citation.endPage598
gi.citation.publisherPlaceBonn
gi.citation.startPage585
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleDigitalisierung des Energiesystems

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper6_07.pdf
Größe:
210.63 KB
Format:
Adobe Portable Document Format