Logo des Repositoriums
 

Gone in 30 days! Predictions for car import planning

dc.contributor.authorLacic, Emanuel
dc.contributor.authorTraub, Matthias
dc.contributor.authorDuricic, Tomislav
dc.contributor.authorHaslauer, Eva
dc.contributor.authorLex, Elisabeth
dc.date.accessioned2021-06-21T10:12:43Z
dc.date.available2021-06-21T10:12:43Z
dc.date.issued2018
dc.description.abstractA challenge for importers in the automobile industry is adjusting to rapidly changing market demands. In this work, we describe a practical study of car import planning based on the monthly car registrations in Austria. We model the task as a data driven forecasting problem and we implement four different prediction approaches. One utilizes a seasonal ARIMA model, while the other is based on LSTM-RNN and both compared to a linear and seasonal baselines. In our experiments, we evaluate the 33 different brands by predicting the number of registrations for the next month and for the year to come.en
dc.identifier.doi10.1515/itit-2017-0040
dc.identifier.pissn2196-7032
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36617
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.ispartofit - Information Technology: Vol. 60, No. 4
dc.subjectAutomotive industry
dc.subjectData-driven expert systems
dc.subjectCar brand recommendation
dc.subjectLinear methods
dc.subjectNonlinear methods
dc.subjectDeep learning
dc.subjectCustomer demand
dc.titleGone in 30 days! Predictions for car import planningen
dc.typeText/Journal Article
gi.citation.endPage228
gi.citation.publisherPlaceBerlin
gi.citation.startPage219

Dateien