Logo des Repositoriums
 

Scientometrics: how to perform a big data trend analysis with scienceminer

dc.contributor.authorFrehe, Volker
dc.contributor.authorRugaitis, Vilius
dc.contributor.authorTeuteberg, Frank
dc.contributor.editorPlödereder, E.
dc.contributor.editorGrunske, L.
dc.contributor.editorSchneider, E.
dc.contributor.editorUll, D.
dc.date.accessioned2017-07-26T10:58:47Z
dc.date.available2017-07-26T10:58:47Z
dc.date.issued2014
dc.description.abstractThis paper describes the results of the implementation of an application that was designed under the design science principles. The purpose of this application is to identify trends in science. First, the status quo of similar applications as well as the knowledge base about data mining in the field of scientometrics is analyzed. Afterwards, the implementation as well as the evaluation of our application is described. Our web-based application allows to search for contributions (literature and internet, e.g., twitter, news), executes several data mining methods and visualizes the results in seven different ways. Each visualization has some filters and further control elements. It is the first application to provide the complete process from data acquisition to data visualization in an automated way.en
dc.identifier.isbn978-3-88579-626-8
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofInformatik 2014
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-232
dc.titleScientometrics: how to perform a big data trend analysis with sciencemineren
dc.typeText/Conference Paper
gi.citation.endPage1710
gi.citation.publisherPlaceBonn
gi.citation.startPage1699
gi.conference.date22.-26. September 2014
gi.conference.locationStuttgart

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
1699.pdf
Größe:
479.75 KB
Format:
Adobe Portable Document Format