Logo des Repositoriums
 

Extraction of Information from Invoices – Challenges in the Extraction Pipeline

dc.contributor.authorThiée, Lukas-Walter
dc.contributor.authorKrieger, Felix
dc.contributor.authorFunk, Burkhardt
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorWohlgemuth, Volker
dc.date.accessioned2023-11-29T14:50:23Z
dc.date.available2023-11-29T14:50:23Z
dc.date.issued2023
dc.description.abstractData from invoices are key information for business processes. In order to use the data and create business value, the information must be captured in a digital and structured form. Leveraging digital tools and AI/ML is state-of-the-art in the extraction of information from invoices. However, the existing approaches are trained on specific languages and layouts, and while focusing on the performance of individual metrics, they neglect the demonstration of the pipeline from raw data to processable information. In this paper, we investigate the types of information on invoices and address the challenges in the extraction pipeline. We contribute by providing a morphological framework for the problematization and design of a pipeline as part of a design science study.en
dc.identifier.doi10.18420/inf2023_180
dc.identifier.isbn978-3-88579-731-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43108
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2023 - Designing Futures: Zukünfte gestalten
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-337
dc.subjectInvoice recognition
dc.subjectInformation extraction
dc.subjectData pipeline
dc.titleExtraction of Information from Invoices – Challenges in the Extraction Pipelineen
dc.typeText/Conference Paper
gi.citation.endPage1792
gi.citation.publisherPlaceBonn
gi.citation.startPage1777
gi.conference.date26.-29. September 2023
gi.conference.locationBerlin
gi.conference.sessiontitleWirtschaft, Management Industrie - Joint Workshop IntDig 2023 MOC 2023; Intelligente Digitalisierung, (KI-basiertes) Management und Optimierung komplexer Systeme

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
09_01_06_Thiee.pdf
Größe:
822.47 KB
Format:
Adobe Portable Document Format