An Improved Machine-Learning Model for the Identification and Classification of Memory-Based PUF Responses
dc.contributor.author | Mexis, Nico | |
dc.contributor.author | Anagnostopoulos, Nikolaos Athanasios | |
dc.contributor.author | Arul, Tolga | |
dc.contributor.author | Kavun, Elif Bilge | |
dc.contributor.author | Katzenbeisser, Stefan | |
dc.contributor.editor | Krämer, Juliane | |
dc.contributor.editor | Aulbach, Thomas | |
dc.contributor.editor | Nüsken, Michael | |
dc.date.accessioned | 2024-04-16T12:38:34Z | |
dc.date.available | 2024-04-16T12:38:34Z | |
dc.date.issued | 2023 | |
dc.identifier.doi | 10.18420/cdm-2023-35-03 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/43932 | |
dc.language.iso | en | |
dc.pubPlace | Bonn | |
dc.publisher | Gesellschaft für Informatik e.V. / FG KRYPTO | |
dc.relation.ispartof | crypto day matters 34 | |
dc.relation.ispartofseries | crypto day matters | |
dc.title | An Improved Machine-Learning Model for the Identification and Classification of Memory-Based PUF Responses | en |
dc.type | Text/Abstract | |
gi.conference.date | 25.-26. Juni 2023 | |
gi.conference.location | Regensburg | |
gi.conference.sessiontitle | Kurzbeitrag |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- CryptoDayMatters35-03-Mexis.pdf
- Größe:
- 237.58 KB
- Format:
- Adobe Portable Document Format