Logo des Repositoriums
 

Training of Artificial Neural Networks Based on Feed-in Time Series of Photovoltaics and Wind Power for Active and Reactive Power Monitoring in Medium-Voltage Grids

dc.contributor.authorDipp, Marcel
dc.contributor.authorMenke, Jan-Hendrik
dc.contributor.authorWende - von Berg, Sebastian
dc.contributor.authorBraun, Martin
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:31Z
dc.date.available2019-08-27T12:55:31Z
dc.date.issued2019
dc.description.abstractToday, there is already a significant injection of renewable energies at the medium-voltage level, which requires the use of reliable monitoring methods. In addition to tracking electrical parameters such as line current or bus voltage magnitudes, precise knowledge of the active and reactive power feed-in is becoming increasingly relevant in order to provide the necessary information for optimization strategies at higher voltage levels. For this reason, we have developed a method to monitor the active and reactive power for the medium-voltage level with very low measurement density, which is based on artificial neural networks (ANN). The actual training of ANN is accomplished with photovoltaics (PV) and wind feed-in time series based on real weather data to ensure realistic monitoring of the injection. The presented method is applied to a German medium-voltage grid to evaluate the estimation accuracy.en
dc.identifier.doi10.18420/inf2019_71
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25023
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectartificial neural networks
dc.subjectactive and reactive power monitoring
dc.subjecttime series
dc.titleTraining of Artificial Neural Networks Based on Feed-in Time Series of Photovoltaics and Wind Power for Active and Reactive Power Monitoring in Medium-Voltage Gridsen
dc.typeText/Conference Paper
gi.citation.endPage557
gi.citation.publisherPlaceBonn
gi.citation.startPage545
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleDigitalisierung des Energiesystems

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper6_04.pdf
Größe:
1.48 MB
Format:
Adobe Portable Document Format