Logo des Repositoriums
 
Konferenzbeitrag

A Proposal for Physics-Informed Quantum Graph Neural Networks for Simulating Laser Cutting Processes

Zusammenfassung

Simulations are crucial for production monitoring and planning in manufacturing. Still, the performance of simulations based on mathematical modeling and machine learning methods is limited and opaque to widespread application. Quantum computing offers the potential for exponential acceleration of these tools, while physically informed neural networks (PINN) improve learning and reduce ambiguity. Objective of this paper is to explore the concept of developing a tool for laser cutting simulation based on a quantum neural network that can be trained on thermal physics principles.

Beschreibung

Mehrin Ruhi, Zurana; Stein, Hannah; Maaß, Wolfgang (2023): A Proposal for Physics-Informed Quantum Graph Neural Networks for Simulating Laser Cutting Processes. INFORMATIK 2023 - Designing Futures: Zukünfte gestalten. DOI: 10.18420/inf2023_183. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-731-9. pp. 1809-1811. Wirtschaft, Management Industrie - Joint Workshop IntDig 2023 MOC 2023; Intelligente Digitalisierung, (KI-basiertes) Management und Optimierung komplexer Systeme. Berlin. 26.-29. September 2023

Zitierform

Tags