Logo des Repositoriums
 
Konferenzbeitrag

Privacy-Preserving Stress Detection Using Smartwatch Health Data

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

We present the first privacy-preserving approach for stress detection from wrist-worn wearables based on the Time-Series Classification Transformer (TSCT) architecture and incorporating Differential Privacy (DP) to ensure provable privacy guarantees. The non-private baseline results prove the TSCT to be an effective model for the given task. Our DP experiments then show that the private models suffer from reduced utility but can still be used for reliable stress detection depending on the application. Our proposed approach has potential applications in smart health, where it can be used to monitor smartwatch users’ stress levels without compromising their privacy and provide timely interventions or suggestions to prevent adverse health outcomes. Another primary contribution is our evaluation, which studies and shows negative effects of DP regarding model training. The results of this work provide perspectives for future research and applications whenever the fields of stress detection and data privacy intervene.

Beschreibung

Lange, Lucas; Degenkolb, Borislav; Rahm, Erhard (2023): Privacy-Preserving Stress Detection Using Smartwatch Health Data. INFORMATIK 2023 - Designing Futures: Zukünfte gestalten. DOI: 10.18420/inf2023_66. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-731-9. pp. 549-560. Cybersecurity & Privatsphäre - 4. Interdisciplinary Privacy Security at Large Workshop. Berlin. 26.-29. September 2023

Zitierform

Tags