Logo des Repositoriums
 

3D Face Recognition For Cows

dc.contributor.authorYeleshetty, Deepak
dc.contributor.authorSpreeuwers, Luuk
dc.contributor.authorLi, Yan
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-16T08:25:44Z
dc.date.available2020-09-16T08:25:44Z
dc.date.issued2020
dc.description.abstractThis paper presents a method to recognize cows using their 3D face point clouds. Face is chosen because of the rigid structure of the skull compared to other parts. The 3D face point clouds are acquired using a newly designed dual 3D camera setup. After registering the 3D faces to a specific pose, the cow’s ID is determined by running Iterative Closest Point (ICP) method on the probe against all the point clouds in the gallery. The root mean square error (RMSE) between the ICP correspondences is used to identify the cows. The smaller the RMSE, the more likely that the cow is from the same class. In a closed set of 32 cows with 5 point clouds per cow in the gallery, the ICP recognition demonstrates an almost perfect identification rate of 99.53%.en
dc.identifier.isbn978-3-88579-700-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34323
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-306
dc.subjectCows
dc.subjectBiometrics
dc.subjectVisual identification
dc.subject3D face recognition
dc.subjectPointcloud registration
dc.subjectIterative Closest Point
dc.subjectRealsense cameras.
dc.title3D Face Recognition For Cowsen
dc.typeText/Conference Paper
gi.citation.endPage171
gi.citation.publisherPlaceBonn
gi.citation.startPage163
gi.conference.date16.-18. September 2020
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2020_paper_22_update3.pdf
Größe:
2.74 MB
Format:
Adobe Portable Document Format