Logo des Repositoriums
 
Konferenzbeitrag
Full Review

Recognition of phenological development stages of apple blossoms using computer vision

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2025

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Deep learning-based computer vision is increasingly supporting precision agriculture in orchards, reducing reliance on manual monitoring by trained specialists. This work presents an approach for automated monitoring of apple blossom growth stages, an important task for optimizing yield and quality in orchard management. We (1) construct an annotated dataset of hourly images capturing apple blossoms across BBCH stages 53 to 71, (2) develop convolutional neural networks (CNNs) for growth stage classification, and (3) validate model performance using explainable AI (XAI) to ensure interpretability. Our best-performing model achieves a classification accuracy of 93.1%, demonstrating strong potential for integration into Farm Management Information Systems for data-driven orchard management. Model interpretability analysis further reveals that, with adequate training data, the network predominantly relies on features within the blossom itself to inform predictions, suggesting robustness in real-world application scenarios.

Beschreibung

Nguyen, Xuan Khanh; Braun, Bastian; Heider, Nico; Schieck, Martin (2025): Recognition of phenological development stages of apple blossoms using computer vision. 45. GIL-Jahrestagung, Digitale Infrastrukturen für eine nachhaltige Land-, Forst- und Ernährungswirtschaft. DOI: 10.18420/giljt2025_09. Bonn: Gesellschaft für Informatik e.V.. PISSN: 2944-7682. EISSN: 2944-7682. ISBN: 978-3-88579-802-6. pp. 119-130. Wieselburg, Austria. 25/26. Februar 2025

Zitierform

Tags