Logo des Repositoriums
 
Zeitschriftenartikel

Exploring syntactical features for anomaly detection in application logs

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

De Gruyter

Zusammenfassung

In this research, we analyze the effect of lightweight syntactical feature extraction techniques from the field of information retrieval for log abstraction in information security. To this end, we evaluate three feature extraction techniques and three clustering algorithms on four different security datasets for anomaly detection. Results demonstrate that these techniques have a role to play for log abstraction in the form of extracting syntactic features which improves the identification of anomalous minority classes, specifically in homogeneous security datasets.

Beschreibung

Copstein, Rafael; Karlsen, Egil; Schwartzentruber, Jeff; Zincir-Heywood, Nur; Heywood, Malcolm (2022): Exploring syntactical features for anomaly detection in application logs. it - Information Technology: Vol. 64, No. 1-2. DOI: 10.1515/itit-2021-0064. Berlin: De Gruyter. PISSN: 2196-7032. pp. 15-27. Article

Zitierform

Tags