Logo des Repositoriums
 

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space

dc.contributor.authorSehili, Ziad
dc.contributor.authorRohde, Florens
dc.contributor.authorFranke, Martin
dc.contributor.authorRahm, Erhard
dc.contributor.editorKai-Uwe Sattler
dc.contributor.editorMelanie Herschel
dc.contributor.editorWolfgang Lehner
dc.date.accessioned2021-03-16T07:57:09Z
dc.date.available2021-03-16T07:57:09Z
dc.date.issued2021
dc.description.abstractWe propose and evaluate several approaches for multi-party privacy-preserving record linkage (MP-PPRL) for multiple data sources. To reduce the number of comparisons for scalability we propose a new pivot-based metric space approach that dynamically adapts the selection of pivots for additional sources and growing data volume. We investigate so-called early and late clustering schemes that either cluster matching records per additional source or holistically for all sources. A comprehensive evaluation for different datasets confirms the high effectiveness and efficiency of the proposed methods.en
dc.identifier.doi10.18420/btw2021-13
dc.identifier.isbn978-3-88579-705-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/35796
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-311
dc.subjectPrivacy Preserving Record Linkage
dc.subjectBloom filter
dc.subjectmetric space
dc.subjecttriangle inequality
dc.subjectClustering
dc.titleMulti-Party Privacy Preserving Record Linkage in Dynamic Metric Spaceen
gi.citation.endPage278
gi.citation.startPage257
gi.conference.date13.-17. September 2021
gi.conference.locationDresden
gi.conference.sessiontitleData Integration, Semantic Data Management, Streaming

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A3-3.pdf
Größe:
874.31 KB
Format:
Adobe Portable Document Format