Konferenzbeitrag
Selbstadaptive Fitness in evolutionären Prozessen
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2022
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Köllen Druck + Verlag GmbH
Zusammenfassung
Evolutionäre Prozesse modellieren die Entwicklung von Objekten mit zunächst zufälligen Eigenschaften zu Objekten, deren Eigenschaften einer Ordnung oder einem bestimmten Ziel (genannt Fitness) folgen. Evolutionäre Prozesse treten in Software häufig als Optimierungsalgorithmen oder beim maschinellen Lernen auf, wobei ihr Ziel meist extrinsisch durch einen Designer oder Programmierer bestimmt ist. Oft ist es jedoch von Vorteil, wenn besagte Algorithmen ihre Fitnessberechnung während ihrer Ausführung intrinsisch selbst adaptieren können. Wir verfolgen dieses Phänomen zurück auf künstliche Chemiesysteme (artificial chemistry systems), wo Fitness ohne Designer entsteht. Wir untersuchen diversitätsbasierte Fitnessfunktionen in evolutionären Algorithmen und können erstmalig ihre Effektivität begründen, indem wir das theoretische Modell der produktiven Fitness definieren. Schließlich finden wir einen Effektivitätsgewinn auch beim Zusammenspiel von evolutionären Algorithmen und bestärkendem Lernen (reinforcement learning), wobei beide Methoden allein durch eine wechselseitig adaptive Fitness interagieren. Dieses Konzept lässt sich auch als Architekturmuster für Softwaresysteme verallgemeinern.