Logo des Repositoriums
 
Konferenzbeitrag
Full Review

Mapping invasive Lupine on grasslands using UAV images and deep learning

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Semi-natural grasslands are threatened by invasive species. This study employs high-resolution images captured by an unmanned aerial vehicle (UAV) and deep learning techniques to map Lupine (Lupinus polyphyllus Lindl.) in grasslands, which is one of the most common invasive species in European grasslands. The methodology involves RGB image acquisition, structure from motion processing, canopy height modelling, and deep learning semantic segmentation model development. The resulting models were trained on RGB data, canopy surface height data, and their combination. The models demonstrate high accuracy and efficacy in identifying Lupine distribution. These models offer a valuable tool for continuously monitoring and managing invasive Lupine, with potential applications in similar environments without retraining. The method is beneficial for early-stage invasion detection, facilitating more targeted management efforts for ecologists.

Beschreibung

Wijesingha, Jayan; Schulze-Brüninghoff, Damian; Wachendorf, Michael (2024): Mapping invasive Lupine on grasslands using UAV images and deep learning. 44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft. DOI: 10.18420/giljt2024_27. Bonn: Gesellschaft für Informatik e.V.. ISSN: 2944-7682. PISSN: 1617-5468. ISBN: 978-3-88579-738-8. pp. 461-466. Stuttgart. 27.-28. Februar 2024

Zitierform

Tags