Logo des Repositoriums
 

AI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using Deep Neural Networks

dc.contributor.authorJonas Boysen, Jonas
dc.contributor.authorStein, Anthony
dc.contributor.editorGandorfer, Markus
dc.contributor.editorHoffmann, Christa
dc.contributor.editorEl Benni, Nadja
dc.contributor.editorCockburn, Marianne
dc.contributor.editorAnken, Thomas
dc.contributor.editorFloto, Helga
dc.date.accessioned2022-02-24T13:35:03Z
dc.date.available2022-02-24T13:35:03Z
dc.date.issued2022
dc.description.abstractRecent Deep Learning-based Computer Vision methods proved quite successful in various tasks, also involving the classification, detection and segmentation of crop and weed plants with Convolutional Neural Networks (CNNs). Such solutions require a vast amount of labeled data. The annotation is a tedious and time-consuming task, which often constitutes a limiting factor in the Machine Learning process. In this work, an approach for an annotation pipeline for UAV-based images of sugar beet fields of BBCH-scale 12 to 17 is presented. For the creation of pixel-wise annotated data, we utilize a threshold-based method for the creation of a binary plant mask, a row detection based on Hough Transform and a lightweight CNN for the classification of small, cropped images. Our findings demonstrate that an increased image data annotation efficiency can be reached by using an AI approach already at the crucial Machine Learning-process step of training data collection.en
dc.identifier.isbn978-3-88579-711-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/38432
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-317
dc.subjectweed detection
dc.subjectdata annotation
dc.subjectConvolutional Neural Networks
dc.subjectsemantic segmentation
dc.subjectinteractive AI
dc.titleAI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using Deep Neural Networksen
dc.typeText/Conference Paper
gi.citation.endPage68
gi.citation.publisherPlaceBonn
gi.citation.startPage63
gi.conference.date21.-22. Februar 2022
gi.conference.locationTänikon, Online

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL2022_Boysen_63-68.pdf
Größe:
258.16 KB
Format:
Adobe Portable Document Format