Optimizing Similarity Search in the M-Tree
dc.contributor.author | Guhlemann, Steffen | |
dc.contributor.author | Petersohn, Uwe | |
dc.contributor.author | Meyer-Wegener, Klaus | |
dc.contributor.editor | Mitschang, Bernhard | |
dc.contributor.editor | Nicklas, Daniela | |
dc.contributor.editor | Leymann, Frank | |
dc.contributor.editor | Schöning, Harald | |
dc.contributor.editor | Herschel, Melanie | |
dc.contributor.editor | Teubner, Jens | |
dc.contributor.editor | Härder, Theo | |
dc.contributor.editor | Kopp, Oliver | |
dc.contributor.editor | Wieland, Matthias | |
dc.date.accessioned | 2017-06-20T20:24:34Z | |
dc.date.available | 2017-06-20T20:24:34Z | |
dc.date.issued | 2017 | |
dc.description.abstract | A topic of growing interest in a wide range of domains is the similarity of data entries. Data sets of genome sequences, text corpora, complex production information, and multimedia content are typically large and unstructured, and it is expensive to compute similarities in them. The only common denominator a data structure for e cient similarity search can rely on are the metric axioms. One such data structure for e cient similarity search in metric spaces is the M-Tree, along with a number of compatible extensions (e.g. Slim-Tree, Bulk Loaded M-Tree, multiway insertion M-Tree, M2-Tree, etc.). The M-Tree family uses common algorithms for the k-nearest-neighbor and range search. In this paper we present new algorithms for these tasks to considerably improve retrieval performance of all M-Tree-compatible data structures. | en |
dc.identifier.isbn | 978-3-88579-659-6 | |
dc.identifier.pissn | 1617-5468 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik, Bonn | |
dc.relation.ispartof | Datenbanksysteme für Business, Technologie und Web (BTW 2017) | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-265 | |
dc.subject | Metric databases | |
dc.subject | metric access methods | |
dc.subject | index structures | |
dc.subject | multimedia databases | |
dc.subject | selectivity estimation | |
dc.subject | similarity search | |
dc.title | Optimizing Similarity Search in the M-Tree | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 504 | |
gi.citation.startPage | 485 | |
gi.conference.date | 6.-10. März 2017 | |
gi.conference.location | Stuttgart | |
gi.conference.sessiontitle | Index Structures |
Dateien
Originalbündel
1 - 1 von 1