Logo des Repositoriums
 

Instance-level augmentation for synthetic agricultural data using depth maps

dc.contributor.authorWübben, Henning
dc.contributor.authorButz, Raphaela
dc.contributor.authorvon Szadkowski, Kai
dc.contributor.authorBarenkamp, Marco
dc.contributor.editorHoffmann, Christa
dc.contributor.editorStein, Anthony
dc.contributor.editorRuckelshausen, Arno
dc.contributor.editorMüller, Henning
dc.contributor.editorSteckel, Thilo
dc.contributor.editorFloto, Helga
dc.date.accessioned2023-02-21T15:13:57Z
dc.date.available2023-02-21T15:13:57Z
dc.date.issued2023
dc.description.abstractImage augmentation is a key component in computer vision pipelines. Its techniques utilize different levels of data annotation. A lack of methods can be observed when it comes to data that supplies depth maps, in particular synthetic data. We propose a novel augmentation method named DepthAug that utilizes depth annotations in image data and examine its performance in the context of object detection tasks. Results show a boost in MAP score performance compared to previous related methods.en
dc.identifier.isbn978-3-88579-724-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40258
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-330
dc.subjectimage augmentation
dc.subjectsynthetic data
dc.subjectdeep image compositing
dc.subjectobject detection
dc.subjectdomain gap
dc.titleInstance-level augmentation for synthetic agricultural data using depth mapsen
dc.typeText/Conference Paper
gi.citation.endPage278
gi.citation.publisherPlaceBonn
gi.citation.startPage267
gi.conference.date13.-14. Februar 2023
gi.conference.locationOsnabrück

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2023_Wuebben_267-278.pdf
Größe:
883.47 KB
Format:
Adobe Portable Document Format