Logo des Repositoriums
 

Finger-vein Sample Compression in Presence of Pre-Compressed Gallery Data

dc.contributor.authorLipowski, Tamara
dc.contributor.authorMaser, Babak
dc.contributor.authorHämmerle-Uhl, Jutta
dc.contributor.authorUhl, Andreas
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2019-06-17T10:00:21Z
dc.date.available2019-06-17T10:00:21Z
dc.date.issued2018
dc.description.abstractCompression settings for sample (probe) finger vein data in case of already pre-compressed gallery data are investigated. Inhomogeneous compression scenarios are assessed where probe data can be compressed with different compression technique and compression ratio compared to gallery data using 4 lossy compression schemes, 2 finger vein recognition schemes, and 2 data sets. Results obtained indicate that in case of JPEG2000 pre-compressed gallery, also sample images should be compressed in the same manner, while for JPEG pre-compressed gallery, the optimal sample compression setting depends on the dataset, on the target compression ratio, and on the recognition scheme employed.en
dc.identifier.isbn978-3-88579-676-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/23793
dc.language.isoen
dc.publisherKöllen Druck+Verlag GmbH
dc.relation.ispartofBIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-283
dc.subjectfinger vein recognition
dc.subjectlossy compression
dc.subjectpre-compressed gallery
dc.subjectmixed compression schemes.
dc.titleFinger-vein Sample Compression in Presence of Pre-Compressed Gallery Dataen
dc.typeText/Conference Paper
gi.citation.publisherPlaceBonn
gi.conference.date26.-28. September 2018
gi.conference.locationDarmstadt

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2018_paper_19.pdf
Größe:
147.27 KB
Format:
Adobe Portable Document Format