Towards Classification of Technical Sound Events with Deep Learning Models
dc.contributor.author | Rieder, Constantin | |
dc.contributor.author | Germann, Markus | |
dc.contributor.author | Scherer, Klaus Peter | |
dc.contributor.editor | Heisig, Peter | |
dc.contributor.editor | Orth, Ronald | |
dc.contributor.editor | Schönborn, Jakob Michael | |
dc.contributor.editor | Thalmann, Stefan | |
dc.date.accessioned | 2020-10-05T11:30:35Z | |
dc.date.available | 2020-10-05T11:30:35Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Sounds of machines and mechanical systems contain a lot of information about the observed object and its state. Experienced engineers and technical service staff can often identify or classify a certain technical object with state via its sound. An equivalent automated system with such capabilities is difficult to realise because of noisy unknown surroundings. In this paper, we show an approach to implement the mentioned characteristics with deep learning methods and enhance the power of a technical assistance system. | de |
dc.identifier.isbn | 978-3-88579-607-8 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/34383 | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | WM 2019 - Wissensmanagement in digitalen Arbeitswelten: Aktuelle Ansätze und Perspektiven - Knowledge Management in Digital Workplace Environments: State of the Art and Outlook | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-303 | |
dc.subject | Deep Learning | |
dc.subject | Sound Analysis | |
dc.subject | Information Systems | |
dc.title | Towards Classification of Technical Sound Events with Deep Learning Models | de |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 193 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 188 | |
gi.conference.date | 18.-20. März 2019 | |
gi.conference.location | Potsdam | |
gi.conference.sessiontitle | WS IV: Data-Driven Knowledge Management |
Dateien
Originalbündel
1 - 1 von 1