Logo des Repositoriums
 
Konferenzbeitrag
Full Review

Deep Learning-based UAV-assisted grassland monitoring to facilitate Eco-scheme 5 realization

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Eco-scheme 5 has been introduced to promote biodiversity in permanent grasslands through sustainable land management. While this scheme motivates farmers through result-based remuneration, it also entails a significant monitoring cost in terms of time and money to identify indicators manually. To overcome this burden and facilitate the realization of Eco-scheme 5, we developed an object detection model based on Deep Learning (DL) to automate the indicator species identification. First, we trained and evaluated the model on high-resolution Unmanned Aerial Vehicle (UAV) data. The model achieved an Average Precision (AP) rate of 80.8 AP50, but limited training data and the class imbalance problem among indicators affected the model performance. To address these problems, we enriched training data with proximal images of indicators, resulting in a performance gain from 80.8 AP50 to 95.3 AP50. Our results demonstrate the potential of DL and UAV applications in assisting result-based agri-environmental schemes (AES) such as Eco-scheme 5.

Beschreibung

Basavegowda, Deepak H.; Höhne, Marina M.-C.; Weltzien, Cornelia (2024): Deep Learning-based UAV-assisted grassland monitoring to facilitate Eco-scheme 5 realization. 44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft. DOI: 10.18420/giljt2024_29. Bonn: Gesellschaft für Informatik e.V.. ISSN: 2944-7682. PISSN: 1617-5468. ISBN: 978-3-88579-738-8. pp. 197-202. Stuttgart. 27.-28. Februar 2024

Zitierform

Tags