Process Mining for Unstructured Data: Challenges and Research Directions
dc.contributor.author | Koschmider, Agnes | |
dc.contributor.author | Aleknonytė-Resch, Milda | |
dc.contributor.author | Fonger, Frederik | |
dc.contributor.author | Imenkamp, Christian | |
dc.contributor.author | Lepsien, Arvid | |
dc.contributor.author | Apaydin, Kaan | |
dc.contributor.author | Janssen, Dominik | |
dc.contributor.author | Langhammer, Dominic | |
dc.contributor.author | Ziolkowski, Tobias | |
dc.contributor.author | Zisgen, Yorck | |
dc.contributor.editor | Michael, Judith | |
dc.contributor.editor | Weske, Mathias | |
dc.date.accessioned | 2024-02-19T11:27:56Z | |
dc.date.available | 2024-02-19T11:27:56Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The application of process mining for unstructured data might significantly elevate novel insights into disciplines where unstructured data is a common data format. To efficiently analyze unstructured data by process mining and to convey confidence into the analysis result, requires bridging multiple challenges. The purpose of this paper is to discuss these challenges, present initial solutions and describe future research directions. We hope that this article lays the foundations for future collaboration on this topic. | en |
dc.identifier.doi | 10.18420/modellierung2024_012 | |
dc.identifier.isbn | 978-3-88579-742-5 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/43614 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | Modellierung 2024 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-348 | |
dc.subject | Process Mining | |
dc.subject | Unstructured Data | |
dc.subject | Challenges | |
dc.subject | Directions | |
dc.title | Process Mining for Unstructured Data: Challenges and Research Directions | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 136 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 119 | |
gi.conference.date | 12.-15. March 2024 | |
gi.conference.location | Potsdam, Germany | |
gi.conference.sessiontitle | Business Processes |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Modellierung_24_S3_2_Process_Mining_for_Unstructured_Data__Challenges_and_Research_Directions.pdf
- Größe:
- 655.02 KB
- Format:
- Adobe Portable Document Format