Logo des Repositoriums
 

Computational Challenges for Artificial Intelligence and Machine Learning in Environmental Research

dc.contributor.authorWerner, Martin
dc.contributor.authorDax, Gabriel
dc.contributor.authorLaass, Moritz
dc.contributor.editorReussner, Ralf H.
dc.contributor.editorKoziolek, Anne
dc.contributor.editorHeinrich, Robert
dc.date.accessioned2021-01-27T13:34:39Z
dc.date.available2021-01-27T13:34:39Z
dc.date.issued2021
dc.description.abstractIn the last decades, environmental research has started to adopt a data-driven perspective enabled by huge sensor networks, satellite-based Earth observation, and almost ubiquitous Internet access. Some of these data-driven approaches are expected to make visions of a sustainable future come true. For example, by enabling societies to live in sustainable smart cities, or to feed the world with precision agriculture. Or by fighting environmental pollution or global deforestation with increased observational power. However, there is a serious gap between some of the current expectations put into data-driven techniques and the maturity of the field of spatial machine learning and artificial intelligence or computer science in general. We give a few examples of open research issues that computer science has to solve in order to make data-driven approaches to environmental sciences successful.en
dc.identifier.doi10.18420/inf2020_95
dc.identifier.isbn978-3-88579-701-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34809
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2020
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-307
dc.subjectEnvironmental Sciences
dc.subjectComputer Sciences
dc.titleComputational Challenges for Artificial Intelligence and Machine Learning in Environmental Researchen
gi.citation.endPage1017
gi.citation.startPage1009
gi.conference.date28. September - 2. Oktober 2020
gi.conference.locationKarlsruhe
gi.conference.sessiontitleKünstliche Intelligenz in der Umweltinformatik

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C21-1.pdf
Größe:
270.5 KB
Format:
Adobe Portable Document Format