Logo des Repositoriums
 

Self-Supervised Learning of Speech Representation via Redundancy Reduction

dc.contributor.authorBrima, Yusuf
dc.contributor.editorStolzenburg, Frieder
dc.date.accessioned2023-09-20T04:20:44Z
dc.date.available2023-09-20T04:20:44Z
dc.date.issued2023
dc.description.abstractOur proposed research aims to contribute to the field of SSL for speech processing by developing representations that effectively capture latent speaker statistics. A comprehensive evaluation in various downstream tasks will provide a thorough assessment of the representations’ suitability and performance. The outcomes of this research will advance our understanding and utilization of SSL in speech representation learning, ultimately enhancing speaker-related applications and their practical implications.en
dc.identifier.doi10.18420/ki2023-dc-02
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42402
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDC@KI2023: Proceedings of Doctoral Consortium at KI 2023
dc.subjectBarlow Twins; Acoustic Analysis; Deep Learning; Disentangled Representations; Representation Learning; Redundancy Reduction; Speech Analysisen
dc.titleSelf-Supervised Learning of Speech Representation via Redundancy Reductionen
dc.typeText
gi.citation.endPage19
gi.citation.startPage11
gi.conference.date45195
gi.conference.locationBerlin
gi.conference.sessiontitleDoctoral Consortium at KI 2023
gi.document.qualitydigidoc

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A2-paper.pdf
Größe:
610.58 KB
Format:
Adobe Portable Document Format