Logo des Repositoriums
 
Konferenzbeitrag

ATDLLMD: Acceptance test-driven LLM development

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Since the capabilities of Large Language Models (LLMs) have massively increased in the last years, many new applications based on LLMs are possible. However, these new applications also pose new challenges in LLM development. This article proposes an acceptance test-driven development (ATDD) style, baptized ATDLLMD, where the LLM’s training and test sets are extended in each iteration by data coming from validation of the previous iteration’s LLM and system around the LLM. So the validation phase supplies the additional or updated data for training and verification of the LLM. ATDLLMD is made possible by two major innovative solutions: applying the innovative CPMAI process, and applying our own verification tool, LM-Eval, leading to a red-train green cycle for LLM development, which resembles ATDD, but integrates data science best practices.

Beschreibung

Faragó, David (2024): ATDLLMD: Acceptance test-driven LLM development. Softwaretechnik-Trends Band 44, Heft 2. Gesellschaft für Informatik e.V.

Zitierform

DOI

Tags