Logo des Repositoriums
 

Bayesian parameter estimation in Green business process management: A case study in online-advertising

dc.contributor.authorBlask, Tobias
dc.contributor.editorHorbach, Matthias
dc.date.accessioned2019-03-07T09:33:41Z
dc.date.available2019-03-07T09:33:41Z
dc.date.issued2013
dc.description.abstractCompanies take their responsibilities for a sustainable planet more and more seriously. For online-retail businesses a significant share of all CO2 emissions is generated by delivering goods to their clients. Now various companies are implementing a greener logistic chain into their business processes. What is a central question for these performance driven companies in this context is whether it pays to invest in additional costs for carbon neutral delivery and if the customers appreciate these steps and prefer retailers that behave in this manner. We develop and perform a non reactive A/B-test that enables us to evaluate the influence of sustainability information on the customers decision to buy a product by clicking on an ad on a search engine results page (SERP). We analyze campaign performance data generated from a European e- commerce retailer, apply a Bayesian parameter estimation to compare the two groups, and demonstrate the advantages of the given Bayesian approach in comparison to the application of Null Hypothesis Significance Testing (N HST ).en
dc.identifier.isbn978-3-88579-614-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20801
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-220
dc.titleBayesian parameter estimation in Green business process management: A case study in online-advertisingen
dc.typeText/Conference Paper
gi.citation.endPage863
gi.citation.publisherPlaceBonn
gi.citation.startPage852
gi.conference.date16.-20. September 2013
gi.conference.locationKoblenz
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
852.pdf
Größe:
780.3 KB
Format:
Adobe Portable Document Format