Logo des Repositoriums
 

Minimizing the Annotation Effort for Detecting Wildlife in Camera Trap Images with Active Learning

dc.contributor.authorAuer, Daphne
dc.contributor.authorBodesheim, Paul
dc.contributor.authorFiderer, Christian
dc.contributor.authorHeurich, Marco
dc.contributor.authorDenzler, Joachim
dc.date.accessioned2021-12-14T10:57:27Z
dc.date.available2021-12-14T10:57:27Z
dc.date.issued2021
dc.description.abstractAnalyzing camera trap images is a challenging task due to complex scene structures at different locations, heavy occlusions, and varying sizes of animals. One particular problem is the large fraction of images only showing background scenes, which are recorded when a motion detector gets triggered by signals other than animal movements. To identify these background images automatically, an active learning approach is used to train binary classifiers with small amounts of labeled data, keeping the annotation effort of humans minimal. By training classifiers for single sites or small sets of camera traps, we follow a region-based approach and particularly focus on distinct models for daytime and nighttime images. Our approach is evaluated on camera trap images from the Bavarian Forest National Park. Comparable or even superior performances to publicly available detectors trained with millions of labeled images are achieved while requiring significantly smaller amounts of annotated training images.en
dc.identifier.doi10.18420/informatik2021-042
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37707
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectActive Learning
dc.subjectWildlife Monitoring
dc.subjectCamera Trap Images
dc.titleMinimizing the Annotation Effort for Detecting Wildlife in Camera Trap Images with Active Learningen
gi.citation.endPage564
gi.citation.startPage547
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleWorkshop: Computer Science for Biodiversity (CS4BIODiversity)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
D1-9.pdf
Größe:
2.99 MB
Format:
Adobe Portable Document Format