Logo des Repositoriums
 

Probabilistic methods for predicting protein functions in protein-protein interaction networks

dc.contributor.authorBest, Christoph
dc.contributor.authorZimmer, Ralf
dc.contributor.authorApostolakis, Joannis
dc.contributor.editorGiegerich, Robert
dc.contributor.editorStoye, Jens
dc.date.accessioned2019-10-11T11:32:38Z
dc.date.available2019-10-11T11:32:38Z
dc.date.issued2004
dc.description.abstractWe discuss probabilistic methods for predicting protein functions from protein-protein interaction networks. Previous work based on Markov Randon Fields is extended and compared to a general machine-learning theoretic approach. Using actual protein interaction networks for yeast from the MIPS database and GO-SLIM function assignments, we compare the predictions of the different probabilistic methods and of a standard support vector machine. It turns out that, with the currently available networks, the simple methods based on counting frequencies perform as well as the more sophisticated approaches.en
dc.identifier.isbn3-88579-382-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/28662
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofGerman Conference on Bioinformatics 2004, GCB 2004
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-53
dc.titleProbabilistic methods for predicting protein functions in protein-protein interaction networksen
dc.typeText/Conference Paper
gi.citation.endPage168
gi.citation.publisherPlaceBonn
gi.citation.startPage159
gi.conference.dateOctober 4-6, 2004
gi.conference.locationBielefeld
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.53-20.pdf
Größe:
263.53 KB
Format:
Adobe Portable Document Format