Logo des Repositoriums
 

Immersive Exploration of Machine Learning Data Combining Visual Analytics with Explainable AI

dc.contributor.authorPotthast, Jonas
dc.contributor.authorGrimm, Valentin
dc.contributor.authorRubart, Jessica
dc.date.accessioned2023-08-24T06:24:30Z
dc.date.available2023-08-24T06:24:30Z
dc.date.issued2023
dc.description.abstractWith the need to explain complex machine learning (ML) models it is necessary to explore human friendly visualizations and interaction techniques of data. In our position paper, we discuss a unique way for interacting with machine learning data to help decision makers in developing a mental model. This can increase trust towards the ML models and make the complexity digestible. In our approach, we combine visual analytics with explainable AI. In particular, we present a Mixed Reality based scatterplot application making use of SHAP values, where feature axes are automatically adjusted when diving deeper into parts of the data.en
dc.identifier.doi10.18420/muc2023-mci-ws16-389
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42144
dc.publisherGI
dc.relation.ispartofMensch und Computer 2023 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.titleImmersive Exploration of Machine Learning Data Combining Visual Analytics with Explainable AIen
dc.typeText/Workshop Paper
gi.conference.date3.-6. September 2023
gi.conference.locationRapperswil
gi.conference.sessiontitleMCI-WS16 - UCAI 2023: Workshop on User-Centered Artificial Intelligence

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
muc23-mci-ws16-389.pdf
Größe:
4.42 MB
Format:
Adobe Portable Document Format