Logo des Repositoriums
 
Textdokument

Entwicklung eines Music Information Retrieval-Tools zur Melodic Similarity-Analyse deutschsprachiger Volkslieder

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2017

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Wir präsentieren einen Beitrag zum Einsatz computergestützter Methoden für die quantitative Untersuchung einer großen Sammlung symbolisch repräsentierter Melodien deutschsprachiger Volkslieder. Im Zuge dessen wurde ein Music Information Retrieval-Tool (MIR) konzipiert, mit dem gezielt nach Liedblättern anhand bestimmter Metainformationen (z.B. Jahr, Sangesort, etc.), bestimmter Wörter in den Liedtexten oder bestimmter Sequenzen innerhalb der monophonen Melodien gesucht werden kann. Darüber hinaus kann mit dem MIR-Tool untersucht werden, ob es bspw. wiederkehrende Muster oder melodische Universalien in deutschsprachigen Volksliedern gibt. Insgesamt stehen drei Repräsentationsebenen für Suchanfragen zur Verfügung: Die Suche nach konkreten Melodiefragmenten (Tonhöhe / Tondauer), die Suche nach Intervallfolgen und die Suche nach abstrakten Melodiekonturen im Parsons-Code. Eine zentrale Herausforderung für die Umsetzung eines solchen MIR-Tools mit mehreren Repräsentationsebenen ist die Wahl einer geeigneten melodic similarity-Komponente. Wir beschreiben die Implementierung verschiedener edit distance-basierter Ansätze und präsentieren die Ergebnisse einer Evaluationsstudie für die unterschiedlichen Implementierungen. Alle Algorithmen und Converter wurden als generische Toolbox umgesetzt und stehen unter der MIT open source-Lizenz für die Nachnutzung zur freien Verfügung.

Beschreibung

Burghardt, Manuel; Lamm, Lukas (2017): Entwicklung eines Music Information Retrieval-Tools zur Melodic Similarity-Analyse deutschsprachiger Volkslieder. INFORMATIK 2017. DOI: 10.18420/in2017_05. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-669-5. pp. 87-99. Musik trifft Informatik. Chemnitz. 25.-29. September 2017

Zitierform

Tags