Logo des Repositoriums
 
Konferenzbeitrag

Using Deep Learning for automated birth detection during farrowing

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Pig livestock farming has been undergoing major structural change for years. The number of animals per farm is constantly increasing, while competition is becoming more intense due to volatile slaughter prices. Sustainable, welfare-oriented livestock farming becomes increasingly difficult under these conditions. Studies have shown that animal-specific birth monitoring of sows can significantly reduce piglet losses. However, continuous monitoring by human staff is inconceivable, which is why systems need to be created that assist farmers in these tasks. For this reason, this paper aims to introduce the first step towards an automated birth monitoring system. The goal is to use deep learning methods from the field of computer vision to enable the detection of individual piglet births based on image data. This information can be used to develop systems that detect the beginning of a birth process, measure the duration of piglet births, and determine the time intervals between piglet births.

Beschreibung

Witte, Jan-Hendrik; Gerberding, Johann; Lensches, Clara; Traulsen, Imke (2022): Using Deep Learning for automated birth detection during farrowing. EnviroInfo 2022. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-722-7. pp. 141. Hamburg. 26.-30- September 2022

Zitierform

DOI

Tags