Logo des Repositoriums
 

Using four data mining techniques to predict grain yield response of winter wheat under organic farming system

dc.contributor.authorHalwani, Mosab
dc.contributor.authorBachinger, Johann
dc.contributor.editorMeyer-Aurich, Andreas
dc.contributor.editorGandorfer, Markus
dc.contributor.editorHoffmann, Christa
dc.contributor.editorWeltzien, Cornelia
dc.contributor.editorBellingrath-Kimura, Sonoko
dc.contributor.editorFloto, Helga
dc.date.accessioned2021-03-02T14:37:16Z
dc.date.available2021-03-02T14:37:16Z
dc.date.issued2021
dc.description.abstractOrganic farming is one of the resource-conserving and environmentally friendly systems that achieve the sustainability principles. An essential issue for sustainable agricultural planning is the accurate yield estimation for the crops involved in the crop rotation. In this study, the potential of predicting grain yield for organic winter wheat under varying soil and climate conditions was conducted by applying four different data mining techniques: multi linear regression (MLR), general linear model (GLM), artificial neural networks (ANN), and regression trees (RT). Considering the modelling accuracy and prediction accuracy, RT is the most robust technique for predicting grain yield of winter wheat at the study sites. MLR and GLM produced the poorest results for the data sets compared in this research. Such poor performance might be due to insufficient MLR and GLM techniques to model non-linear regression present in complex soil-weather-land management interactions. The ANN model ANN is also a promising tool for predicting grain yield of winter wheat particularly under low sample size, however, optimum model structures require further attention.de
dc.identifier.isbn978-3-88579-703-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/35658
dc.language.isode
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof41. GIL-Jahrestagung, Informations- und Kommunikationstechnologie in kritischen Zeiten
dc.relation.ispartofseriesLecture Notes in Informatics
dc.subjectmulti linear regression
dc.subjectgeneral linear model
dc.subjectartificial neural networks
dc.subjectregression trees
dc.subjectwinter wheat yield
dc.subjectorganic farming
dc.titleUsing four data mining techniques to predict grain yield response of winter wheat under organic farming systemde
dc.typeText/Conference Paper
gi.citation.endPage126
gi.citation.publisherPlaceBonn
gi.citation.startPage121
gi.conference.date08.-09. März 2021
gi.conference.locationPotsdam, Online
gi.conference.sessiontitleGIL-Jahrestagung - Fokus: Informations- und Kommunikationstechnologien in kritischen Zeiten

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL2021_Halwani_121-126.pdf
Größe:
480.38 KB
Format:
Adobe Portable Document Format