Logo des Repositoriums
 

Efficient Reverse k-Nearest Neighbor Estimation

dc.contributor.authorAchtert, Elke
dc.contributor.authorBöhm, Christian
dc.contributor.authorKröger, Peer
dc.contributor.authorKunath, Peter
dc.contributor.authorPryakhin, Alexey
dc.contributor.authorRenz, Matthias
dc.contributor.editorKemper, Alfons
dc.contributor.editorSchöning, Harald
dc.contributor.editorRose, Thomas
dc.contributor.editorJarke, Matthias
dc.contributor.editorSeidl, Thomas
dc.contributor.editorQuix, Christoph
dc.contributor.editorBrochhaus, Christoph
dc.date.accessioned2020-02-11T13:22:07Z
dc.date.available2020-02-11T13:22:07Z
dc.date.issued2007
dc.description.abstractThe reverse k-nearest neighbor (RkNN) problem, i.e. finding all objects in a data set the k-nearest neighbors of which include a specified query object, has received increasing attention recently. Many industrial and scientific applications call for solutions of the RkNN problem in arbitrary metric spaces where the data objects are not Euclidean and only a metric distance function is given for specifying object similarity. Usually, these applications need a solution for the generalized problem where the value of k is not known in advance and may change from query to query. In addition, many applications require a fast approximate answer of RkNN-queries. For these scenarios, it is important to generate a fast answer with high recall. In this paper, we propose the first approach for efficient approximative RkNN search in arbitrary metric spaces where the value of k is specified at query time. Our approach uses the advantages of existing metric index structures but proposes to use an approximation of the nearest-neighbor-distances in order to prune the search space. We show that our method scales significantly better than existing non-approximative approaches while producing an approximation of the true query result with a high recall.en
dc.identifier.isbn978-3-88579-197-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/31809
dc.language.isoen
dc.publisherGesellschaft für Informatik e. V.
dc.relation.ispartofDatenbanksysteme in Business, Technologie und Web (BTW 2007) – 12. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-103
dc.titleEfficient Reverse k-Nearest Neighbor Estimationen
dc.typeText/Conference Paper
gi.citation.endPage363
gi.citation.publisherPlaceBonn
gi.citation.startPage344
gi.conference.date07.-09.03.2007
gi.conference.locationAachen
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
344.pdf
Größe:
748.5 KB
Format:
Adobe Portable Document Format