Logo des Repositoriums
 

Requirements Classification for Traceability Link Recovery

dc.contributor.authorHey, Tobias
dc.contributor.authorKeim, Jan
dc.contributor.authorCorallo, Sophie
dc.contributor.editorKoziolek, Anne
dc.contributor.editorLamprecht, Anna-Lena
dc.contributor.editorThüm, Thomas
dc.contributor.editorBurger, Erik
dc.date.accessioned2025-02-14T09:36:29Z
dc.date.available2025-02-14T09:36:29Z
dc.date.issued2025
dc.description.abstractThe paper assesses the potential of requirements classification approaches to identify parts of requirements that are irrelevant for automated traceability link recovery between requirements and code. We were able to show that automatic identification of parts of requirements that do not describe functional aspects can significantly improve the recovery performance and that the parts can be identified with an F1-score of 84 %.en
dc.identifier.doi10.18420/se2025-25
dc.identifier.eissn2944-7682
dc.identifier.issn2944-7682
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45786
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofSoftware Engineering 2025
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-360
dc.subjectRequirements Classification
dc.subjectTraceability Link Recovery
dc.subjectRequirements Engineering
dc.subjectMachine Learning
dc.subjectInformation Retrieval
dc.subjectLarge Language Models (LLM)
dc.titleRequirements Classification for Traceability Link Recoveryen
mci.conference.date22.-28. Februar 2025
mci.conference.locationKarlsruhe
mci.conference.sessiontitleScientific Programme
mci.reference.pages83-84

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B6-3.pdf
Größe:
44.1 KB
Format:
Adobe Portable Document Format