Logo des Repositoriums
 

Data Leakage Through Click Data in Virtual Learning Environments

dc.contributor.authorHartmann, Johanna
dc.contributor.authorHeuer, Hendrik
dc.contributor.authorBreiter, Andreas
dc.contributor.editorHenning, Peter A.
dc.contributor.editorStriewe, Michael
dc.contributor.editorWölfel, Matthias
dc.date.accessioned2022-08-23T09:52:54Z
dc.date.available2022-08-23T09:52:54Z
dc.date.issued2022
dc.description.abstractUnsupervised machine learning techniques are increasingly used to cluster students based on their activity in virtual learning environments. It is commonly assumed that clusters formed by click data merely represent the actions of users and do not allow inferring personal information about individual users. Based on an analysis of 18,660 students and 5.56 million data points from the Open University Learning Analytics Dataset, we show that clusters trained on "raw" click data are highly correlated with personal information like student success, course specifics, and student demographics. Our analysis demonstrates that these clusters allow conclusions about demographic variables like the previous education and the affluence of the residential area. Our investigation shows that apparently, objective click data can leak private attributes. The paper discusses the implications of this for the design of virtual learning environments, especially considering the legal requirements posed by the principle of data minimization of the EU GDPR.en
dc.identifier.doi10.18420/delfi2022-025
dc.identifier.isbn978-3-88579-716-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/38825
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof20. Fachtagung Bildungstechnologien (DELFI)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-322
dc.subjectlearning analytics
dc.subjectmachine learning
dc.subjectalgorithmic bias
dc.subjectclustering
dc.subjectstudent performance
dc.titleData Leakage Through Click Data in Virtual Learning Environmentsen
dc.typeText/Conference Paper
gi.citation.endPage146
gi.citation.publisherPlaceBonn
gi.citation.startPage135
gi.conference.date12.-14. September 2022
gi.conference.locationKarlsruhe

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
DELFI_2022_025.pdf
Größe:
510.96 KB
Format:
Adobe Portable Document Format